8 research outputs found

    Automatic Conflict Detection in Police Body-Worn Audio

    Full text link
    Automatic conflict detection has grown in relevance with the advent of body-worn technology, but existing metrics such as turn-taking and overlap are poor indicators of conflict in police-public interactions. Moreover, standard techniques to compute them fall short when applied to such diversified and noisy contexts. We develop a pipeline catered to this task combining adaptive noise removal, non-speech filtering and new measures of conflict based on the repetition and intensity of phrases in speech. We demonstrate the effectiveness of our approach on body-worn audio data collected by the Los Angeles Police Department.Comment: 5 pages, 2 figures, 1 tabl

    From Tight Gradient Bounds for Parameterized Quantum Circuits to the Absence of Barren Plateaus in QGANs

    Full text link
    Barren plateaus are a central bottleneck in the scalability of variational quantum algorithms (VQAs), and are known to arise in various ways, from circuit depth and hardware noise to global observables. However, a caveat of most existing results is the requirement of t-design circuit assumptions that are typically not satisfied in practice. In this work, we loosen these assumptions altogether and derive tight upper and lower bounds on gradient concentration, for a large class of parameterized quantum circuits and arbitrary observables. By requiring only a couple of design choices that are constructive and easily verified, our results can readily be leveraged to rule out barren plateaus for explicit circuits and mixed observables, namely, observables containing a non-vanishing local term. This insight has direct implications for hybrid Quantum Generative Adversarial Networks (qGANs), a generative model that can be reformulated as a VQA with an observable composed of local and global terms. We prove that designing the discriminator appropriately leads to 1-local weights that stay constant in the number of qubits, regardless of discriminator depth. Combined with our first contribution, this implies that qGANs with shallow generators can be trained at scale without suffering from barren plateaus -- making them a promising candidate for applications in generative quantum machine learning. We demonstrate this result by training a qGAN to learn a 2D mixture of Gaussian distributions with up to 16 qubits, and provide numerical evidence that global contributions to the gradient, while initially exponentially small, may kick in substantially over the course of training

    Differentiable Game Mechanics

    Get PDF
    Deep learning is built on the foundational guarantee that gradient descent on an objective function converges to local minima. Unfortunately, this guarantee fails in settings, such as generative adversarial nets, that exhibit multiple interacting losses. The behavior of gradient-based methods in games is not well understood -- and is becoming increasingly important as adversarial and multi-objective architectures proliferate. In this paper, we develop new tools to understand and control the dynamics in n-player differentiable games. The key result is to decompose the game Jacobian into two components. The first, symmetric component, is related to potential games, which reduce to gradient descent on an implicit function. The second, antisymmetric component, relates to Hamiltonian games, a new class of games that obey a conservation law akin to conservation laws in classical mechanical systems. The decomposition motivates Symplectic Gradient Adjustment (SGA), a new algorithm for finding stable fixed points in differentiable games. Basic experiments show SGA is competitive with recently proposed algorithms for finding stable fixed points in GANs -- while at the same time being applicable to, and having guarantees in, much more general cases.Comment: JMLR 2019, journal version of arXiv:1802.0564

    Adversarial Cheap Talk

    Full text link
    Adversarial attacks in reinforcement learning (RL) often assume highly-privileged access to the victim's parameters, environment, or data. Instead, this paper proposes a novel adversarial setting called a Cheap Talk MDP in which an Adversary can merely append deterministic messages to the Victim's observation, resulting in a minimal range of influence. The Adversary cannot occlude ground truth, influence underlying environment dynamics or reward signals, introduce non-stationarity, add stochasticity, see the Victim's actions, or access their parameters. Additionally, we present a simple meta-learning algorithm called Adversarial Cheap Talk (ACT) to train Adversaries in this setting. We demonstrate that an Adversary trained with ACT can still significantly influence the Victim's training and testing performance, despite the highly constrained setting. Affecting train-time performance reveals a new attack vector and provides insight into the success and failure modes of existing RL algorithms. More specifically, we show that an ACT Adversary is capable of harming performance by interfering with the learner's function approximation, or instead helping the Victim's performance by outputting useful features. Finally, we show that an ACT Adversary can manipulate messages during train-time to directly and arbitrarily control the Victim at test-time

    Validated quantitative cannabis profiling for Canadian regulatory compliance - Cannabinoids, aflatoxins, and terpenes

    No full text
    In response to the Canadian federal government's Cannabis Tracking and Licensing System compliance standards, a quantitative method was created for cannabis analysis, and validated using Eurachem V.2 (2014) guidelines. Cannabinol, cannabidiol, cannabigerol, canna
    corecore